Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece)

نویسندگان

  • Ioannis Dimopoulos
  • J. Chronopoulos
  • Sovan Lek
چکیده

The aim of the present work is to propose a model for the estimation of lead concentration in grasses using urban descriptors easily accessible and to study the specific effect of each descriptor on lead concentration. Six descriptors were considered: the density of vegetation, the vegetation height, wind velocity, height of building, distance of adjacent street, traffic volume. Lead concentrations were determined in one grass species, Cynodon dactylon (L.) Pers, (Bermuda grass), collected from 30 different locations in Athens city. The proposed model is a multilayer perceptron (MLP) trained by backpropagation. The predictive quality of the model was judged by two cross-validation methods. The generalization ability of the model is confirmed by a determination coefficient higher than 0.91. The study of the first partial derivatives of the output of the MLP with respect to each input is used to identify of the factors influencing the lead concentration and the mode of action of each factor. Results allow to classify the environmental descriptors by their decreasing influence on lead concentration: distance of adjacent street, traffic volume, density of vegetation, wind velocity, height of building and vegetation height. © 1999 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

Artificial neural network forecast application for fine particulate matter concentration using meteorological data

Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consi...

متن کامل

Dependence of Default Probability and Recovery Rate in Structural Credit Risk Models: Empirical Evidence from Greece

The main idea of this paper is to study the dependence between the probability of default and the recovery rate on credit portfolio and to seek empirically this relationship. We examine the dependence between PD and RR by theoretical approach. For the empirically methodology, we use the bootstrapped quantile regression and the simultaneous quantile regression. These methods allow to determinate...

متن کامل

Diurnal variation in the nitrate content of parsley foliage

The diurnal fluctuation of nitrate concentration in the foliage of three parsley subspecies (plain-leafed, curly-leafed and turnip rooted parsley) cultivated in the spring and autumn of two consecutive years was examined. Nitrogen was applied at 30 (Control), 75, 150, 300 mg kg-1 in both years, but with the addition of 450 mg kg-1 in year 2. Harvest was carried out at 08:30, 12:30 and 17:30 on ...

متن کامل

Quantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression

Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999